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Abstract: The development of modern quantum technologies, such as quantum computing and 
quantum communication, relies on the use of qubits, a novel computational method distinct from 
classical bits. The nitrogen-vacancy (NV) center, with its excellent optical properties and strong 
coherence, has been highly praised by both the physics and engineering communities as an 
outstanding qubit. It is widely applied in experiments such as quantum key distribution and biological 
fluorescence labeling. The spin of the NV center can be manipulated and detected using lasers and 
microwaves. Additionally, due to its electron spin coherence time reaching the millisecond level, the 
NV center is considered a highly promising system for quantum computing. Experiments utilizing 
NV quantum registers and quantum error correction have been demonstrated. Moreover, NV centers 
can also serve as nanoscale sensors for measuring physical quantities such as magnetic fields, electric 
fields, and temperature. Internationally, NV centers have been used to detect nuclear magnetic 
resonance signals in organic materials and to measure temperature within biological cells. Another 
technology with comparable impact to the NV center is Optically Detected Magnetic Resonance 
(ODMR), which generates spectral lines through the double resonance phenomenon between the 
intrinsic vibrations of molecules or atoms and externally applied microwaves. Obtaining high-quality 
spectral lines, i.e., those closely matching the ideal model, is of crucial importance for both scientific 
research and industrial production. In this paper, we first introduce the physical basis of the NV center, 
including its physical structure, energy level structure, and the eight-peak curve of optically detected 
magnetic resonance. We then analyze the line shape of the ODMR spectrum and demonstrate that it 
follows a Lorentzian profile. Finally, we prove the effect of magnetic field gradient on the spectral 
line width (full width at half maximum, FWHM). 

1. Introduction 
In recent years, the rapid development of quantum technology, exemplified by quantum computing 

and quantum communication, has sparked the wave of a second industrial revolution in information 
technology. Unlike classical computers that operate with classical bits, quantum computers introduce 
the concept of quantum bits (qubits) [1]. In classical computing, the basic unit of computation is the 
classical bit, which can take the values 0 or 1, corresponding to low and high voltage levels, 
respectively. A sequence of 0s and 1s arranged in a specific order forms a bit string that corresponds 
to a particular electrical pulse signal, which is transmitted via antennas for communication. The 
fundamental unit of classical communication is the classical bit, and due to the limitations of its binary 
nature, the computational power of classical computers has reached its limits, failing to meet the 
diverse needs of modern information technology [2]. 

1.1. Nitrogen-Vacancy (NV) Centers in Diamond 
Quantum computing, by enriching the values of computational units, has broken through the 

limitations imposed by the binary nature of classical bits and innovatively introduced the concept of 
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the “quantum bit” or “qubit” [3]. In the concept of quantum bits, the two classical values of 0 and 1 
are regarded as two quantum states |0⟩ and |1⟩. By leveraging the superposition principle in quantum 
mechanics, a qubit is constructed as |𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩, where 𝛼𝛼 and 𝛽𝛽 are complex coefficients. 
This qubit can be represented on the Bloch sphere. 

This approach thus enriches the possible values of a quantum bit. Traditional bits are represented 
by the voltage levels 0 and V on a capacitor, whereas quantum bits are represented by a two-level 
energy system. If a series of quantum bits can be stored, it is possible to emulate the encoding mode 
of classical bits to achieve the encoding of quantum states. 

With the deepening of research, a variety of particles suitable for use as quantum bits have emerged 
rapidly, like bamboo shoots after a spring rain: photons, electrons, ion traps, and so on. Among them, 
the nitrogen-vacancy (NV) center in diamond has stood out due to its unique optical properties, 
winning the favor of physicists and finding widespread application in fields such as electronics, radio 
communications, and quantum communications [4, 5]. 

1.2. The Physical Structure of Nitrogen-Vacancy (NV) Centers 
In the diamond crystal lattice, locations where the structural integrity is disrupted are referred to 

as crystal defects. Among these defects, point defects that selectively absorb light in the visible 
spectrum are known as “color centers.” To date, scientists have identified over 500 distinct types of 
color centers. The nitrogen-vacancy (NV) center in diamond refers to a stable configuration formed 
when a nitrogen atom (Nitrogen, N) replaces a carbon atom (Carbon, C) in the diamond lattice, and 
an adjacent carbon atom is missing, creating a vacancy [6]. This specific arrangement of the nitrogen 
atom and the vacancy is depicted in Figure 1. 

 
Figure 1 This caption has one line so it is centred. 

The nitrogen-vacancy (NV) center is a type of defect in diamond, consisting of a nitrogen atom 
(N) that substitutes for a carbon atom (C) and an adjacent lattice vacancy, as shown in Figure 1. There 
are two primary forms of NV centers: NV0 and NV−. The negatively charged NV− center is the focus 
of quantum technological applications. It contains six electrons in its structure: two from the nitrogen 
atom, three from the carbon atoms adjacent to the vacancy, and one from a captured donor impurity. 
The NV− center exhibits C3V symmetry. The axis of the NV center is defined by the line connecting 
the nitrogen and vacancy sites, and there are four distinct orientations of this axis in the diamond 
lattice, with each pair of axes forming an angle of 109.5°. 

1.3. Energy Level Structure of NV Color Centers and Optical Detection of Magnetic Resonance 
The research indicates that the NV color center consists of four orbitals, all of which are occupied 

by single electrons. Moreover, the energy levels of these orbitals increase progressively. Therefore, 
the electronic structure of the NV color center can be understood as the matching of six electrons with 
four orbitals. This experimental model has been validated by electron paramagnetic resonance (EPR) 
and supported by first-principles calculations of the NV- center, as well as theoretical studies [7]. 

The energy levels of the NV color center include the ground-state spin triplet (3A₂), the excited-
state spin triplet (3E), and two special metastable states (1A₁ and 1E). Among them, the ground-state 
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3A₂ and the excited-state 3E both have spin quantum levels of ms = 0 and ms = ±1, which together 
form two quantum two-level structures as shown in Figure 2. 

 
Figure 2 Energy Level States of NV Color Centers 

The ground-state 3A2 of the NV color center has degenerate ms = ±1 states, which are split from 
the ms = 0 state by a zero-field splitting with a splitting strength of Dgs = 2.87 GHz. However, when 
an external static magnetic field B is applied along the NV axis, the degeneracy of the ms = ±1 states 
is lifted through the Zeeman effect, resulting in two sub-levels: ms = +1 and ms = −1. Specifically, 
the ms = +1 state shifts to a higher energy level, while the ms = −1 state shifts to a lower energy level. 
The degree of splitting is directly proportional to the magnitude of the external static magnetic field 
B. 

Under the influence of an external axial static magnetic field B [8], the Hamiltonian of the ground 
state of the nitrogen-vacancy (NV) color center can be expressed as: 

𝐻𝐻 = 𝐻𝐻𝑠𝑠 + 𝐻𝐻𝑠𝑠𝑠𝑠 + 𝐻𝐻𝑙𝑙                                                               (1) 
The three components can be further written as: 

�
𝐻𝐻𝑠𝑠 = 𝐷𝐷𝑔𝑔𝑔𝑔𝑆𝑆𝑧𝑧2 + 𝐸𝐸�𝑆𝑆𝑥𝑥2 − 𝑆𝑆𝑦𝑦2� + 𝑔𝑔𝑠𝑠𝜇𝜇𝐵𝐵𝐵𝐵�⃗ ⋅ 𝑆𝑆
𝐻𝐻𝑠𝑠𝑠𝑠 = 𝐴𝐴∥𝑆𝑆𝑧𝑧𝐼𝐼𝑧𝑧 + 𝐴𝐴⊥�𝑆𝑆𝑥𝑥𝐼𝐼𝑥𝑥 + 𝑆𝑆𝑦𝑦𝐼𝐼𝑦𝑦�
𝐻𝐻𝐼𝐼 = 𝑃𝑃𝐼𝐼𝑧𝑧2 − 𝑔𝑔𝐼𝐼𝜇𝜇𝑁𝑁𝐵𝐵�⃗ ⋅ 𝑆𝑆

                                         (2) 

In the equation, S = {Sx, Sy, Sz} represents the spin matrices of the electron. 
The unique spin triplet states of the NV color center can be described by a set of wave functions. 

The evolution of these wave functions follows the Schrödinger equation. By solving the eigenvalues 
and eigenvectors of the Hamiltonian, the wave functions and energy levels of each state can be 
obtained. The distribution of a large number of NV color centers among the various energy levels 
follows the Boltzmann distribution. 

In a single nitrogen-vacancy (NV) color center in diamond, there are only six possible energy level 
transition pathways. However, for multiple NV color centers within a bulk diamond crystal, there are 
a total of 24 possible transition pathways. This is because the multiple NV color centers in the bulk 
diamond crystal exist in four different orientations. As a result, the projection strength of the external 
static magnetic field along the four different NV axes is also different. When a resonant microwave 
signal is applied, NV color centers with different orientations correspond to different resonant 
microwave frequencies. Specifically, for one NV axis orientation, there are two distinct resonant 
frequencies: one for the transition from the ground-state ms = 0 level to the ms = +1 level, and the 
other for the transition to the ms = −1 level. Therefore, the four NV axis orientations collectively have 
eight different resonant microwave frequencies, which manifest as eight main resonant peaks in the 
optically detected magnetic resonance (ODMR) spectrum. Additionally, due to the hyperfine 
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structure in the NV color centers, each main resonant absorption peak contains three sub-peaks, 
resulting in a total of 24 resonant absorption peaks corresponding to the 24 transition pathways. 

Considering the combined effects of the intrinsic quantum noise of the diamond NV color centers 
and the applied microwave magnetic field, the resonant absorption peaks are broadened. Therefore, 
in practice, the small resonant peaks are often not observed in the ODMR spectrum, and only the 
eight main peaks are visible, as shown in Figure 3. 

 
Figure 3 Energy Level States of NV Color Centers 

2. Optically Detected Magnetic Resonance (ODMR) Curve 
In 1950, the French physicist Kastler pioneered the experimental method of optically detected 

magnetic resonance (ODMR) [9]. Optically Detected Magnetic Resonance (ODMR) refers to the 
phenomenon of simultaneous occurrence of optical-frequency resonance in atoms or molecules and 
magnetic resonance at radio-frequency or microwave frequencies, known as double resonance. 

The fundamental idea behind ODMR is to use the pumping effect of light to create a polarization 
of the population distribution among the Zeeman sublevels of the atomic ground state. Then, by 
employing magnetic resonance, this polarized population distribution is perturbed, leading to a 
change in the pumping rate of the light. By detecting these changes in the pumping rate, the structure 
of the atomic Zeeman levels can be studied. 

ODMR technology ingeniously combines the high sensitivity of optical detection with the high 
resolution of magnetic resonance [10], integrating both optical and magnetic resonance techniques. 
It is a prime example in terms of experimental design. This technique can be used to study the fine 
and hyperfine structures of atoms or molecules and has the potential for quantum precision 
measurements. Due to its significant applications in fundamental physical research and the 
measurement of weak magnetic fields, Kastler was awarded the Nobel Prize in 1966. 

2.1. Rabi Oscillations 
For a two-level system, when an electromagnetic wave is applied at an appropriate frequency, the 

atoms in the system will continuously undergo transitions between the energy levels E1 and E2. This 
phenomenon is known as Rabi oscillations. The oscillation process is a stochastic process. We study 
a particle undergoing Rabi oscillations using statistical methods and find that the probability of a 
particle in the ground state being excited to the excited state follows a sinusoidal squared distribution. 
Moreover, when the frequency of the applied light field is far from the resonance line of the two 
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energy levels, the interaction between the field and the atom is lost. 
The evolution of the wave function of a particle undergoing Rabi oscillations satisfies unitary 

evolution. 
|𝜓𝜓(𝑡𝑡)⟩ = 𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)|𝜓𝜓(0)⟩

= �
cos Ω𝑡𝑡

2
−𝑖𝑖sin Ω𝑡𝑡

2

−𝑖𝑖sin Ω𝑡𝑡
2

cos Ω𝑡𝑡
2

� �0
1�

= cos Ω𝑡𝑡
2

|𝑔𝑔⟩ − 𝑖𝑖sin Ω𝑡𝑡
2

|𝑒𝑒⟩

                                                       (3) 

Where {|𝑒𝑒 >, |𝑔𝑔 >} = 1
2
�0 Ω
Ω 0�. The first term in the equation represents the ground state, while 

the second term represents the excited state, indicating that the probabilities of being in the ground 
state and the excited state are respectively: 

𝑃𝑃𝑔𝑔(𝑡𝑡) = cos2 Ω𝑡𝑡
2

                                                                   (4) 

𝑃𝑃𝑒𝑒(𝑡𝑡) = sin2 Ω𝑡𝑡
2

                                                                   (5) 

2.2. Derivation of ODMR Line Width 
We know that the NV color center is a spin triplet, and it becomes spin-polarized under optical 

excitation. Meanwhile, the degenerate states undergo Zeeman splitting in the presence of a magnetic 
field, resulting in eight peaks. To investigate the spectral line shapes of these peaks, we first employ 
perturbation theory to study the Schrödinger equation of a two-level system. 

𝐻𝐻� = 𝐻𝐻�0 + 𝐻𝐻�1(𝑡𝑡)                                                                  (6) 

𝐻𝐻�Ψ = 𝐸𝐸Ψ                                                                        (7) 

Where, 𝐻𝐻�1(𝑡𝑡) is the perturbation term, originating from the optical field. 
Let the stationary states corresponding to the two energy levels of the two-level system be 𝜑𝜑1 and 

𝜑𝜑2 , representing the ground state and the excited state, respectively. These stationary states are 
determined by the time-independent Schrödinger equation, so: 

𝐻𝐻�0𝜑𝜑1 = 𝐸𝐸1𝜑𝜑1                                                                     (8) 

𝐻𝐻�0𝜑𝜑2 = 𝐸𝐸2𝜑𝜑2                                                                     (9) 
Correspondingly, by multiplying the time factor, we obtain the wave functions: 

Ѱ1(𝛾⃗𝛾, 𝑡𝑡) = 𝜑𝜑1(𝛾⃗𝛾)𝑒𝑒−𝑖𝑖𝜔𝜔1𝑡𝑡                                                         (10) 

Ѱ2(𝛾⃗𝛾, 𝑡𝑡) = 𝜑𝜑2(𝛾⃗𝛾)𝑒𝑒−𝑖𝑖𝜔𝜔2𝑡𝑡                                                         (11) 
According to the principle of superposition of states, we have: 

Ѱ(𝛾⃗𝛾, 𝑡𝑡) = 𝐶𝐶1(𝑡𝑡)𝜑𝜑1(𝛾⃗𝛾)𝑒𝑒−𝑖𝑖𝜔𝜔1𝑡𝑡 + 𝐶𝐶2(𝑡𝑡)𝜑𝜑2(𝛾⃗𝛾)𝑒𝑒−𝑖𝑖𝜔𝜔2𝑡𝑡                                (12) 
The coefficients should satisfy the normalization condition: 

|𝐶𝐶1(𝑡𝑡)|2 + |𝐶𝐶2(𝑡𝑡)|2 = 1                                                         (13) 
Time-dependent Schrödinger equation: 

iħ ∂
∂t
Ѱ = H�Ѱ                                                                     (14) 

Then, we obtain: 

iĊ1 = Ω cos(cot)𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡 C2                                                      (15) 

iĊ2 = Ω cos(cot)𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡 C2                                                      (16) 
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where ω0 = E2−E1
ħ

, Ω is the frequency of the Rabi oscillation: 

Ω = e
ħ ∫φ1

∗(γ)γ�⃗ E��⃗ 0φ2(γ)d3γ�⃗                                                       (17) 

Here, γ�⃗ ,E��⃗ 0 represent the amplitude of the applied light field, while E represents the electric field 
strength. If the initial state is such that all atoms are in the state φ1, which corresponds to the lower 
energy level, then: 

𝐶𝐶1(0) = 1                                                              (18) 

𝐶𝐶2(0) = 0                                                              (19) 
Then, we obtain: 

𝐶𝐶1(𝑡𝑡) = 1                                                              (20) 

𝐶𝐶2(𝑡𝑡) = 𝛺𝛺
2
�1−𝑒𝑒𝑒𝑒𝑒𝑒[𝑖𝑖(𝜔𝜔0+𝜔𝜔)𝑡𝑡]

𝜔𝜔0+𝜔𝜔
+ 1−𝑒𝑒𝑒𝑒𝑒𝑒[𝑖𝑖(𝜔𝜔0−𝜔𝜔)𝑡𝑡]

𝜔𝜔0−𝜔𝜔
�                                (21) 

Therefore, based on the physical meaning of 𝐶𝐶2(𝑡𝑡), the square of its modulus represents the 
probability of the particle transitioning to the second energy level: 

|𝐶𝐶2(𝑡𝑡)|2 = �𝛺𝛺 sin(𝜔𝜔0−𝜔𝜔)𝑡𝑡/2
𝜔𝜔0−𝜔𝜔

�
2
                                              (22) 

Since the perturbation of the atomic system by the microwave field is very weak, we should assume 
that ω0 + ω and ω0 − ω are very small. Therefore, Equation (16) can be written as: 

iĊ1 = 𝐶𝐶2�𝑒𝑒𝑖𝑖(𝜔𝜔0−𝜔𝜔)𝑡𝑡 + 𝑒𝑒−𝑖𝑖(𝜔𝜔0+𝜔𝜔)𝑡𝑡� 𝛺𝛺
2
                                       (23) 

Compared to ei(ω0−ω)t, e−i(ω0+ω)t  oscillates much more rapidly, so we can make the 
approximation: 

iĊ1 = 𝐶𝐶2𝑒𝑒𝑖𝑖(𝜔𝜔0−𝜔𝜔)𝑡𝑡 𝛺𝛺
2

                                                   (24) 

iĊ2 = 𝐶𝐶1𝑒𝑒𝑖𝑖(𝜔𝜔0+𝜔𝜔)𝑡𝑡 𝛺𝛺
2
                                                   (25) 

It can be combined and written as: 

𝐶̈𝐶2 + 𝑖𝑖(𝜔𝜔0 − 𝜔𝜔)𝐶̇𝐶2 + �𝛺𝛺
2
�
2
𝐶𝐶2 = 0                                       (26) 

Given the initial conditions C1(0) = 1, C2(0) = 0, we can solve for: 

|𝐶𝐶2(𝑡𝑡)|2 = 𝛺𝛺2

𝑊𝑊2 �sin �𝜔𝜔𝜔𝜔
2
��
2
                                             (27) 

Where: 

𝑊𝑊2 = 𝛺𝛺2 + (𝜔𝜔0 − 𝜔𝜔)2                                              (28) 
In the experiment, by controlling the duration of the microwave interaction such that the sine factor 

reaches its maximum value, the fluorescence intensity of the ODMR spectral line is proportional to 
Ω2

W2, where ω0 − ω is the detuning. It can be observed that the spectral line follows a Lorentzian 
distribution, with the peak of the microwave frequency corresponding exactly to the resonance 
absorption peak of the two-level system. 

3. The Impact of Magnetic Field Gradient on ODMR Line Width 
3.1. Theoretical Derivation 

In quantum mechanics, energy can be represented as the eigenvalue of the Hamiltonian operator. 
The Hamiltonian operator for an electron can be expressed by the following equation: 

55



𝐻𝐻� = 𝜇𝜇𝐵𝐵𝐵𝐵�⃗ · 𝑔⃗𝑔𝑠̂𝑠                                                                (29) 

Here, B represents the magnetic field strength, 𝑔⃗𝑔 is the gyromagnetic factor matrix, and 𝑠̂𝑠 is the 
spin matrix. The term 𝐵𝐵�⃗ · 𝑔⃗𝑔𝑠̂𝑠 describes the interaction between the magnetic field and the electron 
spin. 

𝑠̂𝑠 = ℏ
2
�𝜎𝜎�𝑥𝑥,𝜎𝜎�𝑦𝑦,𝜎𝜎�𝑧𝑧�                                                             (30) 

Therefore, H is a matrix. Since the electron spin is1/2, there are two possible values for the spin 
projection: ms=±1/2. For the NV center's spin triplet state, there are three observed spin states: ms=0 
and ms=±1. The energy difference between the eigenvalues corresponding to the ms=±1 states 
represents the energy difference related to the ODMR line width. In the ODMR spectrum, each 
fluorescence contrast on the absorption peak (except for the peak itself) corresponds to two 
frequencies of the applied microwave field. These two frequencies correspond to the energy of the 
NV center ms=±1 states absorbing or emitting a photon, matching the energy difference involved in 
the transition, thus producing the ODMR spectrum. Therefore, the energy associated with the ms=±1 
states (i.e., the difference in the eigenvalues of the Hamiltonian matrix) reflects the ODMR line width. 
We can represent H as a matrix: 

𝐻𝐻� = 1
2
ℏ𝜇𝜇𝐵𝐵𝑔𝑔 ⋅

⎣
⎢
⎢
⎢
⎡ 𝐵𝐵𝑧𝑧

1
√2
�𝐵𝐵𝑥𝑥 − 𝑖𝑖𝐵𝐵𝑦𝑦� 0

1
√2
�𝐵𝐵𝑥𝑥 + 𝑖𝑖𝐵𝐵𝑦𝑦� 0 1

√2
�𝐵𝐵𝑥𝑥 − 𝑖𝑖𝐵𝐵𝑦𝑦�

0 1
√2
�𝐵𝐵𝑥𝑥 + 𝑖𝑖𝐵𝐵𝑦𝑦� −𝐵𝐵𝑧𝑧 ⎦

⎥
⎥
⎥
⎤
                     (31) 

We have three eigenvalues: 

𝐸𝐸+ = 1
2
ℏ𝜇𝜇𝐵𝐵𝑔𝑔𝑔𝑔     𝐸𝐸− = −1

2
ℏ𝜇𝜇𝜇𝜇𝜇𝜇     𝐸𝐸0 = 0                                  (32) 

Additionally, the energy difference between the ms=±1 states is: 

B = �Bx
2 + By

2 + Bz
2                                                         (33) 

𝛥𝛥𝛥𝛥 = 𝐸𝐸+ − 𝐸𝐸− = ℏ𝜇𝜇𝐵𝐵𝑔𝑔𝑔𝑔                                                    (34) 
The frequency difference is given by: 

𝛥𝛥𝛥𝛥 = 𝛥𝛥𝛥𝛥
ℏ

= 𝜇𝜇𝐵𝐵𝑔𝑔𝑔𝑔                                                           (35) 

To study a magnetic field with a gradient, we can expand it based on the gradient and retain the 
first-order terms: 

𝛥𝛥𝛥𝛥 �𝑟𝑟
→
� = 𝛥𝛥𝜔𝜔0 + � 𝜕𝜕𝛥𝛥𝛥𝛥

𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖
�
𝑟𝑟0����⃗
�ri − r0i�                                        (36) 

Here, 𝜔𝜔0 represents the reference ODMR frequency, which is the value at the center of the antenna. 
The equation can be written as: 

Δωr⃗ = r0���⃗                                                                    (37) 

𝛥𝛥𝛥𝛥 = 𝛥𝛥𝑤𝑤0 + 𝜇𝜇𝐵𝐵𝑔𝑔|𝛻𝛻𝛻𝛻|                                                        (38) 

Here, 𝛻𝛻𝛻𝛻 represents the gradient of the magnetic field. It can be seen that the linewidth of the 
ODMR spectrum increases with the increase of the magnetic field gradient. For a perfectly uniform 
magnetic field, the spectral line is the narrowest. Ideally, the spectral line should be an infinitely 
narrow line. However, in reality, even when the external magnetic field is completely uniform and 
zero, the spectral line still has a certain width. This originates from the inherent effects of the atomic 
nuclei themselves, such as spin and relaxation processes. The presence of a magnetic field gradient 
can cause microwave interactions with the intrinsic magnetic moments of the atomic nuclei, reducing 
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the resonance absorption intensity. Therefore, theoretically, where the magnetic field gradient is small, 
the spectral line is tall and narrow; conversely, where the magnetic field gradient is large, the spectral 
line is short and broad. 

3.2. Experimental Validation 
We conducted experiments using antenna samples. The magnetic field distribution in the antenna 

is shown in Figure 4. 

 
Figure 4 Magnetic Field Distribution in the Antenna 

It can be observed that the magnetic field gradient increases as the position gets closer to the center. 
The ODMR spectra obtained from experiments conducted at the center and the edge are shown in 
Figures 5 and Figure 6, respectively. It can be seen that the experimental results are in good agreement 
with the theoretical predictions. 

 
Figure 5 ODMR Spectrum Obtained from Experiments Conducted at the Center 
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Figure 6 ODMR Spectrum Obtained from Experiments Conducted at the Edge 

4. Conclusion 
This paper provides a detailed derivation of the impact of magnetic field gradient on the linewidth 

of ODMR spectra. In modern technology, whether in medicine, physics, or agriculture, the frequency 
of using optically detected magnetic resonance (ODMR) techniques to obtain the magnetic field 
vector at a specific point is increasing. This means that improving the quality of ODMR spectra has 
become a problem that must be addressed in future technological development. Relying on the 
fundamental principles of quantum mechanics, this paper demonstrates the effect of magnetic field 
gradient, i.e., the uniformity of the magnetic field, on the spectral linewidth. Both theory and 
experiments consistently show that ODMR spectra are optimal in a uniform magnetic field. 
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